Video | Business Headlines | Internet | Science | Scientific Ethics | Technology | Search

 


UC computing research into heart disease

UC computing research into heart disease

November 28, 2012

The University of Canterbury (UC) is using its own powerful computer, Foster, one of the biggest in the southern hemisphere, to look at the prediction of heart disease progression through computer modelling.

But UC heart researchers are also using the Intrepid computer system sited at Argonne National Laboratories in Chicago, which is rated 48 in the top 500 supercomputers in the world.

UC professor Tim David said today the modelling on UC’s powerful Foster computer could become a tool in predicting, treating and preventing coronary heart disease.

The Foster at UC has 8192 processors while the US Intrepid has over 160,000. Without the ability to show supercomputing scaling on the Foster computer at UC the heart research team would not have been able to get time on Intrepid.

``Heart attacks occur because the arteries that carry blood to the heart become narrower and narrower allowing less and less blood through until in the end they get blocked and the heart tissue is starved of oxygen,’’ Professor David said.

``These blockages are called plaques and are sometimes quite large in length compared to the artery (two to five cms long). The artery wall is made up of millions and millions of cells, each connected together by junctions (called connexion gap junctions). These junctions allow molecules to pass between the cells and, in doing so, pass information about the cell and its “health” to other cells along the wall.

``The computer model describes, using complex reactions in the arterial cells in the wall, how they interact and pass information up and down the artery. The research seems to show that the information is in the form of waves of cellular calcium that can move up and down the artery.

``The model is an example of multi-scale modelling where actual cell functions are simulated and then connected together into large networks. It’s like the flocking of birds. You study one bird’s flight pattern and that’s pretty ordinary, but put a million of them together and the patterns they make are fantastic.’’

He said the new information could have several practical applications. The number of cells required to make up arterial lengths of the same size as a plaque is very large and means that without the Blue Gene computer this phenomena would not have been able to be investigated.

Using the Foster computer system at UC, Professor David’s team has been able to connect together over seven million cells making up a part of a coronary artery.

The model research could help doctors understand why coronary arteries get blocked at certain positions in the arterial tree. It could also be used to predict the likelihood and the severity of a heart attack and possibly even pinpoint which arteries were at risk of clotting.

The UC computer was named Foster after honorary doctorate recipient Ian Foster, who effectively invented the Grid. He was considered a demi-god amongst supercomputing, Professor David said.

With a grant from the National Heart Foundation of New Zealand, Professor David’s team is looking to simulate the early development of a heart problem. Coronary artery disease progresses slowly over many years, well before it can be detected.

The UC research could better predict from an early stage and ultimately contribute to better patient management.

Professor David and his team have established an international reputation with the computer modelling of cell physiology and have collaborated with other researches overseas.

ends

© Scoop Media

 
 
 
 
 
Business Headlines | Sci-Tech Headlines

 

Scoop Business: Spark, Voda And Telstra To Lay New Trans-Tasman Cable

Spark New Zealand and Vodafone, New Zealand’s two dominant telecommunications providers, in partnership with Australian provider Telstra, will spend US$70 million building a trans-Tasman submarine cable to bolster broadband traffic between the neighbouring countries and the rest of the world. More>>

ALSO:

Statistics: Current Account Deficit Widens

New Zealand's annual current account deficit was $6.1 billion (2.6 percent of GDP) for the year ended September 2014. This compares with a deficit of $5.8 billion (2.5 percent of GDP) for the year ended June 2014. More>>

ALSO:

Still In The Red: NZ Govt Shunts Out Surplus To 2016

The New Zealand government has pushed out its targeted return to surplus for a year as falling dairy prices and a low inflation environment has kept a lid on its rising tax take, but is still dangling a possible tax cut in 2017, the next election year and promising to try and achieve the surplus pledge on which it campaigned for election in September. More>>

ALSO:

Job Insecurity: Time For Jobs That Count In The Meat Industry

“Meat Workers face it all”, says Graham Cooke, Meat Workers Union National Secretary. “Seasonal work, dangerous jobs, casual and zero hours contracts, and increasing pressure on workers to join non-union individual agreements. More>>

ALSO:

Scoop Business: ComCom Charges Hawkins’ Finance Companies Over Debt Recovery

The Commerce Commission has filed criminal proceedings against two finance companies run by former 1980s high-flyer Allan Hawkins over their debt recovery practices. More>>

ALSO:

Science Media Centre: The Big Science Stories Of 2014

It was a dramatic year for science, one that witnessed a severe outbreak of Ebola in West Africa and an historic mission to land a space probe on a comet. On the home front... headlines with animal testing for 'legal highs', 1080 use to tackle increased pest numbers and court action over genetically modified organisms among the most-covered stories. More>>

ALSO:

Get More From Scoop

 
 
Standards New Zealand

Standards New Zealand
 
 
 
 
 
 
 
 
Sci-Tech
Search Scoop  
 
 
Powered by Vodafone
NZ independent news