Video | Business Headlines | Internet | Science | Scientific Ethics | Technology | Search

 


UC computing research into heart disease

UC computing research into heart disease

November 28, 2012

The University of Canterbury (UC) is using its own powerful computer, Foster, one of the biggest in the southern hemisphere, to look at the prediction of heart disease progression through computer modelling.

But UC heart researchers are also using the Intrepid computer system sited at Argonne National Laboratories in Chicago, which is rated 48 in the top 500 supercomputers in the world.

UC professor Tim David said today the modelling on UC’s powerful Foster computer could become a tool in predicting, treating and preventing coronary heart disease.

The Foster at UC has 8192 processors while the US Intrepid has over 160,000. Without the ability to show supercomputing scaling on the Foster computer at UC the heart research team would not have been able to get time on Intrepid.

``Heart attacks occur because the arteries that carry blood to the heart become narrower and narrower allowing less and less blood through until in the end they get blocked and the heart tissue is starved of oxygen,’’ Professor David said.

``These blockages are called plaques and are sometimes quite large in length compared to the artery (two to five cms long). The artery wall is made up of millions and millions of cells, each connected together by junctions (called connexion gap junctions). These junctions allow molecules to pass between the cells and, in doing so, pass information about the cell and its “health” to other cells along the wall.

``The computer model describes, using complex reactions in the arterial cells in the wall, how they interact and pass information up and down the artery. The research seems to show that the information is in the form of waves of cellular calcium that can move up and down the artery.

``The model is an example of multi-scale modelling where actual cell functions are simulated and then connected together into large networks. It’s like the flocking of birds. You study one bird’s flight pattern and that’s pretty ordinary, but put a million of them together and the patterns they make are fantastic.’’

He said the new information could have several practical applications. The number of cells required to make up arterial lengths of the same size as a plaque is very large and means that without the Blue Gene computer this phenomena would not have been able to be investigated.

Using the Foster computer system at UC, Professor David’s team has been able to connect together over seven million cells making up a part of a coronary artery.

The model research could help doctors understand why coronary arteries get blocked at certain positions in the arterial tree. It could also be used to predict the likelihood and the severity of a heart attack and possibly even pinpoint which arteries were at risk of clotting.

The UC computer was named Foster after honorary doctorate recipient Ian Foster, who effectively invented the Grid. He was considered a demi-god amongst supercomputing, Professor David said.

With a grant from the National Heart Foundation of New Zealand, Professor David’s team is looking to simulate the early development of a heart problem. Coronary artery disease progresses slowly over many years, well before it can be detected.

The UC research could better predict from an early stage and ultimately contribute to better patient management.

Professor David and his team have established an international reputation with the computer modelling of cell physiology and have collaborated with other researches overseas.

ends

© Scoop Media

 
 
 
 
 
Business Headlines | Sci-Tech Headlines

 

Cosmetics & Pollution: Proposal To Ban Microbeads

Cosmetic products containing microbeads will be banned under a proposal announced by the Minister for the Environment today. Marine scientists have been advocating for a ban on the microplastics, which have been found to quickly enter waterways and harm marine life. More>>

ALSO:

NIWA: 2016 New Zealand’s Warmest Year On Record

Annual temperatures were above average (0.51°C to 1.20°C above the annual average) throughout the country, with very few locations observing near average temperatures (within 0.5°C of the annual average) or lower. The year 2016 was the warmest on record for New Zealand, based on NIWA’s seven-station series which begins in 1909. More>>

ALSO:

Farewell 2016: NZ Economy Flies Through 2016's Political Curveballs

Dec. 23 (BusinessDesk) - New Zealand's economy batted away some curly political curveballs of 2016 to end the year on a high note, with its twin planks of a booming construction sector and rampant tourism soon to be joined by a resurgent dairy industry. More>>

ALSO:


NZ Economy: More Growth Than Expected In 3rd Qtr

Dec. 22 (BusinessDesk) - New Zealand's economy grew at a faster pace than expected in the September quarter as a booming construction sector continued to underpin activity, spilling over into related building services, and was bolstered by tourism and transport ... More>>

  • NZ Govt - Solid growth for NZ despite fragile world economy
  • NZ Council of Trade Unions - Government needs to ensure economy raises living standards
  • KiwiRail Goes Deisel: Cans electric trains on partially electrified North Island trunkline

    Dec. 21 (BusinessDesk) – KiwiRail, the state-owned rail and freight operator, said a small fleet of electric trains on New Zealand’s North Island would be phased out over the next two years and replaced with diesel locomotives. More>>

  • KiwiRail - KiwiRail announces fleet decision on North Island line
  • Greens - Ditching electric trains massive step backwards
  • Labour - Bill English turns ‘Think Big’ into ‘Think Backwards’
  • First Union - Train drivers condemn KiwiRail’s return to “dirty diesel”
  • NZ First - KiwiRail Going Backwards for Xmas
  • NIWA: The Year's Top Science Findings

    Since 1972 NIWA has operated a Clean Air Monitoring Station at Baring Head, near Wellington... In June, Baring Head’s carbon dioxide readings officially passed 400 parts per million (ppm), a level last reached more than three million years ago. More>>

    ALSO:

    Get More From Scoop

     
     
     
     
     
     
     
     
    Sci-Tech
    Search Scoop  
     
     
    Powered by Vodafone
    NZ independent news