Video | Business Headlines | Internet | Science | Scientific Ethics | Technology | Search


Blisteringly fast liquid flow technique to help industry

UC researching blisteringly liquid flow technique to help industry

December 7, 2012

The University of Canterbury (UC) is researching a liquid flow measurement technique that is so blisteringly fast it opens up new applications for industry.

UC is developing a sensor that can measure the flow of fluid using pressure waves that travel at three times the speed of sound which could help in the design of jet or car engines, and also in the monitoring of all systems involving fluids. This sensor is capable of producing up to 200,000 samples a second.

The technology is also used in the development of a fault detection system for pipelines that can help in the rebuild of the Canterbury pipeline infrastructure.

Normal flow meters are very slow by comparison. The UC technology will allow preventative maintenance of pumping systems before they have costly failures and in precision dynamic fluid applications.

Flow measurement is a fairly common thing in many water and gas systems and UC researchers are inventing a new sensor with great speed and practical advantages.

UC PhD student researcher Aya Kashima, under the supervision of UC civil and natural resources engineering senior lecturer Dr Pedro Lee, is looking to fine tune the new flow meter sensor.

"Unless you measure the flow rate you cannot possibly audit how much groundwater is being used," Kashima said.

"Hydropower stations measure the flow and pressure to diagnose the operation of systems such as making sure the turbines are operating properly. These are all possible applications for the device."

Significant changes are required to install current flow meters. They have to rip out and replace a section of pipe to install it. There are associated down time and costs with this. A device like the once UC is developing does not need any changes to the system and can utilise existing pressure measurements for producing the flow rate

The accuracy of flow measurement is vital for the management of our groundwater and natural gas, for control of industrial processes and the operation of hydroelectric power systems.

The current slow sampling speed means that rapid changes in flow, such as those commonly seen in fuel injection lines or pharmaceutical processes, cannot be detected using current systems.

Kashima said the researchers were fine tuning the flow of liquid sensor in a pipeline system at their fluid mechanics laboratory on campus.

"We will continue research in 2013 so we can improve the sensor’s capabilities," she said.


© Scoop Media

Business Headlines | Sci-Tech Headlines


Shocking Dairy Footage: MPI Failing Our Animals And Damaging Our Reputation

Greens “Nathan Guy needs to urgently look into how his ministry is enforcing animal welfare standards, how these appalling incidents happened under its watch and what it’s going to do prevent similar incidents happening again in the future." More>>


Land & Water Forum: Fourth Report On Water Management

The Land and Water Forum (LWF) today published its fourth report, outlining 60 new consensus recommendations for how New Zealand should improve its management of fresh water and calling on the Government to urgently adopt all of its recommendations from earlier reports. More>>



Welcome Home: Record High Migration Stokes 41-Year High Population Growth

New Zealand annual net migration hit a new high in October as more people arrived from than departed for Australia for the first time in more than 20 years. More>>


Citizens' Advice Bureau: Report Shows Desperate Housing Situation Throughout NZ

CAB's in-depth analysis of over 2000 client enquiries about emergency accommodation shows vulnerable families, pregnant women and children living in cars and garages, even after seeking assistance from the Ministry of Social Development and Housing New Zealand. More>>


Get More From Scoop

Search Scoop  
Powered by Vodafone
NZ independent news