Video | Business Headlines | Internet | Science | Scientific Ethics | Technology | Search

 


First Direct Evidence of Cosmic Inflation

First Direct Evidence of Cosmic Inflation

Release No.:
2014-05

For Release:
Monday, March 17, 2014 - 10:45am

Cambridge, MA -

Almost 14 billion years ago, the universe we inhabit burst into existence in an extraordinary event that initiated the Big Bang. In the first fleeting fraction of a second, the universe expanded exponentially, stretching far beyond the view of our best telescopes. All this, of course, was just theory.

Researchers from the BICEP2 collaboration today announced the first direct evidence for this cosmic inflation. Their data also represent the first images of gravitational waves, or ripples in space-time. These waves have been described as the "first tremors of the Big Bang." Finally, the data confirm a deep connection between quantum mechanics and general relativity.

"Detecting this signal is one of the most important goals in cosmology today. A lot of work by a lot of people has led up to this point," said John Kovac (Harvard-Smithsonian Center for Astrophysics), leader of the BICEP2 collaboration.


Standford University video: Assistant Professor Chao-Lin Kuo surprises Professor Andrei Linde with evidence that supports cosmic inflation theory. The discovery, made by Kuo and his colleagues at the BICEP2 experiment, represents the first images of gravitational waves, or ripples in space-time. These waves have been described as the "first tremors of the Big Bang."

These groundbreaking results came from observations by the BICEP2 telescope of the cosmic microwave background -- a faint glow left over from the Big Bang. Tiny fluctuations in this afterglow provide clues to conditions in the early universe. For example, small differences in temperature across the sky show where parts of the universe were denser, eventually condensing into galaxies and galactic clusters.

Since the cosmic microwave background is a form of light, it exhibits all the properties of light, including polarization. On Earth, sunlight is scattered by the atmosphere and becomes polarized, which is why polarized sunglasses help reduce glare. In space, the cosmic microwave background was scattered by atoms and electrons and became polarized too.

"Our team hunted for a special type of polarization called 'B-modes,' which represents a twisting or 'curl' pattern in the polarized orientations of the ancient light," said co-leader Jamie Bock (Caltech/JPL).

Gravitational waves squeeze space as they travel, and this squeezing produces a distinct pattern in the cosmic microwave background. Gravitational waves have a "handedness," much like light waves, and can have left- and right-handed polarizations.

"The swirly B-mode pattern is a unique signature of gravitational waves because of their handedness. This is the first direct image of gravitational waves across the primordial sky," said co-leader Chao-Lin Kuo (Stanford/SLAC).

The team examined spatial scales on the sky spanning about one to five degrees (two to ten times the width of the full Moon). To do this, they traveled to the South Pole to take advantage of its cold, dry, stable air.

"The South Pole is the closest you can get to space and still be on the ground," said Kovac. "It's one of the driest and clearest locations on Earth, perfect for observing the faint microwaves from the Big Bang."

They were surprised to detect a B-mode polarization signal considerably stronger than many cosmologists expected. The team analyzed their data for more than three years in an effort to rule out any errors. They also considered whether dust in our galaxy could produce the observed pattern, but the data suggest this is highly unlikely.

"This has been like looking for a needle in a haystack, but instead we found a crowbar," said co-leader Clem Pryke (University of Minnesota).

When asked to comment on the implications of this discovery, Harvard theorist Avi Loeb said, "This work offers new insights into some of our most basic questions: Why do we exist? How did the universe begin? These results are not only a smoking gun for inflation, they also tell us when inflation took place and how powerful the process was."

BICEP2 is the second stage of a coordinated program, the BICEP and Keck Array experiments, which has a co-PI structure. The four PIs are John Kovac (Harvard), Clem Pryke (UMN), Jamie Bock (Caltech/JPL), and Chao-Lin Kuo (Stanford/SLAC). All have worked together on the present result, along with talented teams of students and scientists. Other major collaborating institutions for BICEP2 include the University of California at San Diego, the University of British Columbia, the National Institute of Standards and Technology, the University of Toronto, Cardiff University, Commissariat à l'Energie Atomique.

BICEP2 is funded by the National Science Foundation (NSF). NSF also runs the South Pole Station where BICEP2 and the other telescopes used in this work are located. The Keck Foundation also contributed major funding for the construction of the team’s telescopes. NASA, JPL, and the Moore Foundation generously supported the development of the ultra-sensitive detector arrays that made these measurements possible.

Technical details and journal papers can be found on the BICEP2 release website:

http://bicepkeck.org

Headquartered in Cambridge, Mass., the Harvard-Smithsonian Center for Astrophysics (CfA) is a joint collaboration between the Smithsonian Astrophysical Observatory and the Harvard College Observatory. CfA scientists, organized into six research divisions, study the origin, evolution and ultimate fate of the universe.

© Scoop Media

 
 
 
 
 
Business Headlines | Sci-Tech Headlines

 

Cosmetics & Pollution: Proposal To Ban Microbeads

Cosmetic products containing microbeads will be banned under a proposal announced by the Minister for the Environment today. Marine scientists have been advocating for a ban on the microplastics, which have been found to quickly enter waterways and harm marine life. More>>

ALSO:

NIWA: 2016 New Zealand’s Warmest Year On Record

Annual temperatures were above average (0.51°C to 1.20°C above the annual average) throughout the country, with very few locations observing near average temperatures (within 0.5°C of the annual average) or lower. The year 2016 was the warmest on record for New Zealand, based on NIWA’s seven-station series which begins in 1909. More>>

ALSO:

Farewell 2016: NZ Economy Flies Through 2016's Political Curveballs

Dec. 23 (BusinessDesk) - New Zealand's economy batted away some curly political curveballs of 2016 to end the year on a high note, with its twin planks of a booming construction sector and rampant tourism soon to be joined by a resurgent dairy industry. More>>

ALSO:


NZ Economy: More Growth Than Expected In 3rd Qtr

Dec. 22 (BusinessDesk) - New Zealand's economy grew at a faster pace than expected in the September quarter as a booming construction sector continued to underpin activity, spilling over into related building services, and was bolstered by tourism and transport ... More>>

  • NZ Govt - Solid growth for NZ despite fragile world economy
  • NZ Council of Trade Unions - Government needs to ensure economy raises living standards
  • KiwiRail Goes Deisel: Cans electric trains on partially electrified North Island trunkline

    Dec. 21 (BusinessDesk) – KiwiRail, the state-owned rail and freight operator, said a small fleet of electric trains on New Zealand’s North Island would be phased out over the next two years and replaced with diesel locomotives. More>>

  • KiwiRail - KiwiRail announces fleet decision on North Island line
  • Greens - Ditching electric trains massive step backwards
  • Labour - Bill English turns ‘Think Big’ into ‘Think Backwards’
  • First Union - Train drivers condemn KiwiRail’s return to “dirty diesel”
  • NZ First - KiwiRail Going Backwards for Xmas
  • NIWA: The Year's Top Science Findings

    Since 1972 NIWA has operated a Clean Air Monitoring Station at Baring Head, near Wellington... In June, Baring Head’s carbon dioxide readings officially passed 400 parts per million (ppm), a level last reached more than three million years ago. More>>

    ALSO:

    Get More From Scoop

     
     
     
     
     
     
     
     
    Sci-Tech
    Search Scoop  
     
     
    Powered by Vodafone
    NZ independent news