Scoop has an Ethical Paywall
Work smarter with a Pro licence Learn More

World Video | Defence | Foreign Affairs | Natural Events | Trade | NZ in World News | NZ National News Video | NZ Regional News | Search


New Hydrogen-rich Compounds Emerge From Study On Unexplored Combination Of 3 Chemical Elements For Superconductivity

Skoltech researchers and their colleagues from MIPT and China’s Center for High Pressure Science and Technology Advanced Research have computationally explored the stability of the bizarre compounds of hydrogen, lanthanum, and magnesium that exist at very high pressures. In addition to matching the various three-element combinations to the conditions at which they are stable, the team discovered five completely new compounds of hydrogen and either magnesium or lanthanum only.

Published in Materials Today Physics, the study is part of the ongoing search for room-temperature superconductors, whose discovery would have enormous consequences for power engineering, transportation, computers, etc.

“In the previously unexplored system of hydrogen, lanthanum, and magnesium, we find LaMg3H28 to be the ‘warmest’ superconductor. It loses electrical resistance below minus 109 degrees Celsius, at about 2 million atmospheres — not a record, but not bad at all either,” the study’s principal investigator, Professor Artem R. Oganov of Skoltech, commented. “Importantly, though, we also furnish a fresh confirmation of the validity of an empirical rule that guides the search for higher-temperature superconductors. This is the paper’s central finding, along with the five new binary compounds, including LaH13 and MgH38. These are highly exotic compositions for which a theoretical explanation is yet to be proposed.”

Advertisement - scroll to continue reading

Are you getting our free newsletter?

Subscribe to Scoop’s 'The Catch Up' our free weekly newsletter sent to your inbox every Monday with stories from across our network.

“Moreover, we proposed a new approach for studying very large chemical spaces, and demonstrated its effectiveness for the La-Mg-H system,” said Ivan Kruglov, who conducted this study at MIPT.

As for the empirical rule confirmed by the study, it has to do with the transfer of electrons from the metal atoms to the hydrogen atoms. It is reckoned that what promotes superconductivity is the numerous relatively weak covalent bonds between many hydrogen atoms, connected in a 3D network. However, a hydrogen atom can capture up to one entire electron from lanthanum or magnesium, turning it into a negative hydride ion that does not seek any further chemical bonds. Alternatively, if hydrogen gets no electrons from the metal atoms, it satisfies that need by forming H2 molecules with other hydrogen atoms.

“It turns out that an average of one-third of an electron per hydrogen atom is the magic number,” Oganov said. “The closer to it the better for superconductivity. This has been noted for some time, and our study delivers yet another confirmation, this time on a fairly complex chemical system.”

The research reported in this story was supported by Russian Science Foundation Grant Nos. 19-72-30043 and 21-73-10261.


Skoltech is a private international university in Russia, cultivating a new generation of leaders in science, technology, and business, conducting research in breakthrough fields, and promoting technological innovation to solve critical problems that face Russia and the world. Skoltech focuses on six priority areas: life sciences, health, and agro; telecommunications, photonics, and quantum technologies; artificial intelligence; advanced materials and engineering; energy efficiency and the energy transition; and advanced studies. Established in 2011 in collaboration with the Massachusetts Institute of Technology (MIT), Skoltech became the only Russian university to be listed among the leading 100 young universities in the Nature Index in 2019. Website:

© Scoop Media

Advertisement - scroll to continue reading
World Headlines


Join Our Free Newsletter

Subscribe to Scoop’s 'The Catch Up' our free weekly newsletter sent to your inbox every Monday with stories from across our network.