Video | Business Headlines | Internet | Science | Scientific Ethics | Technology | Search

 

NZ quantum physics research featured in Nature

NZ quantum physics research featured in Nature

Physicist Ashton Bradley's research into the behaviour of ultra-cold atoms is gaining international recognition for New Zealand cutting-edge science.

The work is published in the 16 October edition of the prestigious scientific journal Nature. Dr Bradley, most recently based at the University of Queensland, is now a Research Fellow at the University of Otago's Jack Dodd Centre for Quantum Technology.

The Nature publication draws on more than a decade of theoretical work by Jack Dodd Centre director Crispin Gardiner and colleagues. Their research group studies the properties of Bose-Einstein condensates, a novel state of matter predicted by Einstein more than eighty years ago. Bose-Einstein condensates are created when gas is cooled very suddenly to temperatures colder than outer space. Under these conditions, the atoms in the gas line up perfectly and develop bizarre, quantum properties. These properties are being explored by physicists around the world, and New Zealand scientists are among the leaders in this highly-specialised field.

Professor Howard Carmichael, the Dan Walls Chair in Theoretical Physics at the University of Auckland comments: "The formation of a Bose-Einstein condensate can be compared to the way condensation forms on a window--when warm, moist air from indoors hits a cold window surface, droplets of water (fluid) are formed. A Bose-Einstein condensate happens through a rather similar process, but it occurs in a gas cooled to the very lowest temperatures ever reached anywhere in the universe! "The resulting fluid droplet is then extra special, because its motion---the way it flows---obeys the equations of quantum mechanics...the same equations that govern how electrons circulate inside an atom. "The research described in this paper investigates the dramatic events that accompany the formation of this extra special droplet. Dramatic I say, because the formation of the droplet is often accompanied by the simultaneous formation of a vortex, a mini whirlpool (or tornado) within the droplet. "This research combines an experimental investigation that creates Bose-Einstein droplets and detects the vortices (whirlpools) in them, with a theoretical investigation that simulates the droplet and vortice creation on a computer. The close agreement between the simulations and experimental observations is highly significant, particlarly so, because, as I say, the creation is a dramatic event...one not so readily captured by a computer model.

"It is notable that the equations upon which the reported computer simulations are based were developed in New Zealand, by Crispin Gardiner, Director of the University of Otago's Jack Dodd Centre, and Matthew Davis, now at the ARC Centre of Excellence for Quantum-Atom Optics at the University of Queensland. Co-author on this work is Ashton Bradley, a young New Zealand scientist who recently joined the Physics Department at the University of Otago. Ashton's contribution as theoretician is an essential part of the combined experiment-theory impact of this piece of science, at the forefront of a very exciting field. "It is just one example of how a young scientist returning to New Zealand can bring the spotlight of the world's leading scientific endeavors to the country. I am struck by the fact that two other young physicists who recently returned to New Zealand, also to the University of Otago, have subsequently moved on to greener pastures. One must only hope that Ashton receives the encouragement and support required to induce him to stay and continue to attract the scientific spotlight to New Zealand." Professor John Harvey, Department of Physics, University of Auckland comments: "

The paper in Naturereports major progress on understanding the creation of quantized vortices which occur in superfluids.

Lest this seem mindbogglingly abstruse, the work has relevance to understanding the creation of the universe and to the development of high precision instrumentation. "It is a product of a series of international collaborations which had their origin in Ashton's PhD thesis completed in Wellington in 2002, and I am particularly pleased to see people such as Ashton returning to New Zealand. "

This paper is evidence that our New Zealand scientists can not only participate in international scientific research at the forefront of their field, but that they can develop their careers using world class facilities here. For far too long New Zealand has simply exported top scientists for the benefit of other countries." Professor Robert Ballagh, Head of the Department of Physics at University of Otago comments: "This work is a very significant achievement by a very talented young theoretical physicist, who has recently returned to New Zealand. The work represents an important contribution to our understanding of the behaviour of matter in the new pure quantum states that we have only recently been able to create.

The experiment reported, and its analysis, is the first time we have been able to observe and understand the spontaneous formation of quantum vortices.

The experiment has been done using ultra-cold atoms, but it also has some broad implications for other areas, because this mechanism may be important in the early stages of the formation of the universe. "Ashton did his Ph D work in New Zealand, in the area of fundamental quantum theory, for which New Zealand has earned a very strong international reputation over the past three decades or so.

He has built on foundation work of New Zealand physicists, and has developed a powerful methodology which gives detailed understanding of these complex modern experiments. He has fantastic technical skills, and very deep insight into the fundamentals of quantum theory. It is wonderful that we have to be able to attract him back to New Zealand with the help of a FRST postdoctoral Fellowship. It's a 'good news' story of reversing the brain drain with one of our brightest young New Zealanders, and we are delighted that our group has been able to offer the stimulating environment that has helped to bring him back." To talk to these experts or others about this issue and to obtain a copy of the research, please contact the Science Media

ENDS

© Scoop Media

 
 
 
 
 
Business Headlines | Sci-Tech Headlines

 

Crown Accounts: Slightly Softer Growth Expected In PREFU

A slightly softer growth forecast is the main feature of largely unchanged Pre-election Fiscal Update compared to the Budget forecasts three months ago, Finance Minister Steven Joyce says. More>>

ALSO:

Water: Farming Leaders Pledge To Help Make Rivers Swimmable

In a first for the country, farming leaders have pledged to work together to help make New Zealand’s rivers swimmable for future generations. More>>

ALSO:

Unintended Consequences: Liquor Change For Grocery Stores On Tobacco Tax

Changes in the law made to enable grocery stores to continue holding liquor licences to sell alcohol despite increases in tobacco taxes will take effect on 15 September 2017. More>>

Back Again: Government Approves TPP11 Mandate

Trade Minister Todd McClay says New Zealand will be pushing for the minimal number of changes possible to the original TPP agreement, something that the remaining TPP11 countries have agreed on. More>>

ALSO:

By May 2018: Wider, Earlier Microbead Ban

The sale and manufacture of wash-off products containing plastic microbeads will be banned in New Zealand earlier than previously expected, Associate Environment Minister Scott Simpson announced today. More>>

ALSO: