Celebrating 25 Years of Scoop
Licence needed for work use Learn More

Education Policy | Post Primary | Preschool | Primary | Tertiary | Search

 

Canterbury gets $6.65 million in research funding

University of Canterbury
Te Whare Wananga o Waitaha

news release
11 September 2003

University of Canterbury gets $6.65 million in research funding


Tracing the history of species, populations and individuals using mathematical methods to examine genetic sequencing is just one of 12 Canterbury University research projects
that have been successful in gaining funding from the Government-funded Marsden Fund this year.

Canterbury University had a great success rate in its 2003 applications to the Fund, with 12 of the 19 applications being successful, attracting total funding of $6.65 million over three years.

Deputy Vice-Chancellor and chairman of the University’s Research Committee Professor Bob Kirk was delighted with the success and said it showed Canterbury had very strong research projects “across the board”.

“The successful applicants range from nanotechnology and astronomy through earth and biological sciences to social sciences and the humanities. Five of the 12 came from our new School of Biological Sciences, a tribute to the research capacity of the new school.”

Through collaborations with other universities and research institutes, Canterbury University researchers are involved in a number of other projects that were successful in the funding round.


The Canterbury projects are:

The mathematics of life
As Charles Darwin watched and listened to the life on the Galapagos Islands he created views on the origin of the species that revolutionised the world.

But now, instead of looking from the outside, the search is at the molecular level for the clues that tell how all life is related. With thousands of genes on the human chromosomes recently unravelled during the Human Genome Project, and with the continuing discovery of genetic sequences from other species, the time has come for new tools to decipher the web of biological relationships.

World-leading researchers Dr Charles Semple and Professor Mike Steel from
the University of Canterbury have recently published the first book that provides the mathematical methods that are essential to navigating this maze of information that genetics has uncovered.

By using a Marsden grant to further develop these methods, they will help trace the history of species, populations and individuals. Funding $120,000 per year for three years

The quick stick
In the relatively protected and small area of human womb, the sperm and egg still must overcome enormous odds to unite and grow. Now imagine fertilisation in the sea - eggs and sperm must fight the wind, tide and predators for the cycle of life to continue.

But despite surmounting formidable obstacles, the microscopic offspring of NZ's large brown seaweeds have one last hurdle to overcome. Caught in the turbulent environment of a nearshore rocky reef, it must somehow penetrate the surface of a slimy rock. Before they can call this rock home, they must stick - quick!

How do these tenacious tiny seeds succeed? Associate Professor David Schiel from the University of Canterbury’s School of Biological Sciences will lead a team using the sciences of ecology, chemistry and physics to delve deeper into this aquatic challenge. Funding: $220,000 a year for three years

Decision, decisions: A plant’s life
If plants were people, they might all be accountants. Each day, a plant has to allocate resources between strategies for growth, survival and reproduction. This endless balancing act should maximise the plant's chances of evolutionary success - but how does a plant decide what to do when faced with frequent fire?

Dr Ashley Sparrow from the University of Canterbury’s School of Biological Sciences will use a Marsden Fund grant to study why some plants choose to store reserves in the face of fire and sprout back to life afterwards, while others produce seed before the
fire and regrow as seedlings. The unpredictability of the fire means that the plants must gamble on which strategy is more successful in both the short and long-term.

Comparing the reactions of plants in fire-prone Western Australia, with plants on the South Island of New Zealand that rarely experience fire, he hopes to find answers to about how plants optimise the allocation of their resources to give themselves the best chance of success. Funding: $200,000 per year for three years.

The other successful projects are:
- The mosquito terminator: Processes underlying selective attention (Professor Robert Jackson)
- Critical thresholds for avoiding inbreeding depression in endangered wildlife: Into the ark two by two? (Dr Jim Briskie)
- A simultaneous search for microlensing and transiting planets (Dr Michael Albrow)
- The pronunciation of Maori and the influence of English: A longitudinal study (Dr Margaret Maclagan)
- Orbital or thermal causes of glaciations in New Zealand (Dr Jamie Shulmeister)
- Sub-wavelength optics using surface plasmons (Dr Richard Blaikie)
- Internal conflict in the Asia Pacific region: Evaluating conflict management strategies and possible responses by New Zealand (Professor Jacob Bercovitch)
- Molecular cages of controlled size and shape (Professor Peter Steel)
- Unravelling the chemistry of a critical step of lysine biosynthesis (Dr Juliet Gerrard).

ENDS

© Scoop Media

Advertisement - scroll to continue reading
 
 
 
Culture Headlines | Health Headlines | Education Headlines

 
 
 
 
 
 
 

LATEST HEADLINES

  • CULTURE
  • HEALTH
  • EDUCATION
 
 
 
 

Join Our Free Newsletter

Subscribe to Scoop’s 'The Catch Up' our free weekly newsletter sent to your inbox every Monday with stories from across our network.